If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+12v-99=0
a = 1; b = 12; c = -99;
Δ = b2-4ac
Δ = 122-4·1·(-99)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{15}}{2*1}=\frac{-12-6\sqrt{15}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{15}}{2*1}=\frac{-12+6\sqrt{15}}{2} $
| -6=2x/5 | | -(5x-11)=21 | | 3w+7(w-2)=6 | | 60/10=a/3 | | b1/10-3=5 | | 32x+142=180 | | 1/10b-3=5 | | x-25+4x+10=180 | | a+65+a+60+75=180 | | (3w-3)w=7 | | (x-4)+(3x+4)=180 | | (3x+29)+(10x-5)=180 | | X+12/y=18 | | 2x^2+36=-18x | | 9+(-1x)=-63 | | 9+(-1x)=63 | | x120+x+80=180 | | +120+x+80=180 | | 12a-7a=9 | | 10-a/4=13 | | 5(b+2)=8b+10-3b | | 4(x-1/4)=1/3(12x-3 | | 12a-7a=a | | 3(-2x+1)=-6x+5 | | -7(1-4k)+4=164 | | -3a+7=9 | | Y-15=n | | -0.2(x+5)=0.6 | | 0.2(x+5)=0.6 | | 0.2x+5=0.6x | | 10y=-2y+24 | | 10y=-2+24 |